Transcatheter Aortic Valve Implantation (TAVI) With Self Expandable Device

Jan Kovac, University Hospitals of Leicester NHS
Trust, Leicester, United Kingdom

The Allure of Aortic Stenosis

Background

- Aortic stenosis incidence: 2-7% > 65 years
- Untreated severe AS significant mortality

Severe Symptomatic Patients Require Urgent Attention

"Surgical intervention should be performed promptly once even...minor

symptoms

The need for PAVR: Euroheart survey

Symptomatic AS: NYHA Class III or IV or Angina

(Iung et al. Eur Heart J 2005;26:2714-20)

GLADYS IS GLAD TO BE A WORLD HEART-OP FIRST BY CATHY BUSS HEALTH CORRESPONDENT

10:30 - 29 January 2008

A 90-year-old widow who made medical history by having Britain's first keyhole heart-valve replacement is celebrating the first anniversary of the operation.

Gladys Adams, from Wigston, is preparing for the wedding of her 28year-old grandson - an event she thought she would never see.

She shows no sign of slowing down and is back to cooking for her family - including a Sunday roast for 10.

Mrs Adams was the first person in Britain to have the procedure, which replaces a patient's aortic valve without the need for open heart surgery, in January last year.

Mrs Adams said: "I feel lucky to have been able to have this operation. I never thought I would see my 90th birthday last September, let alone be getting ready to go to my grandson's wedding this August.

"I am back to cooking for my daughter and son-in-law and the usual Sunday roast for 10 people."

CoreValve ReValving System for PAVR Components

- 1. Self-expanding multi-level support frame with a tri-leaflet porcine pericardial tissue valve
- 2. 18F catheter delivery system
- 3. Disposable loading system

Self-Expanding Multi-level Support Frame

Diamond cell configuration

Nitinol: memory shaped/no recoil

Multi-level design incorporates three *different* areas of radial and hoop strength

- •Low radial force area orients the system
- •Constrained area avoids coronaries and features supra-annular valve leaflets
- •High radial force provides secure anchoring and constant force mitigates paravalvular leak

Radiopaque

Porcine Pericardial Tissue Valve

- Specifically designed for transcatheter delivery
- Single layer porcine pericardium
- Tri-leaflet configuration
- Tissue valve sutured to frame
- Standard tissue fixation techniques
- 200M cycle AWT testing completed
- Supra-annular valve function —
- Intra-annular implantation and sealing skirt

18F Delivery Catheter System

CoreValve PAVR ReValving System Total Experience

Time Period	Implant Phase	Device Used	Number of Patients	
July 2004-July 2005	First in Man	25 French	14	
May2005-August2006	21F Intl Trial Includes 2 ReDo	21 French	65	
May 2006-Ongoing	18F Intl Trial	18 French	112	
May 2007-Ongoing	Expanded Evaluation	(6 18 French	482	
Total Worldwid	673			
			(1200)	

Updated 24 June, 2008

Safety and Efficacy Studies Criteria

- Native Aortic Valve Disease
- Severe AS: AVAI < 0.6 cm²/m²
- 27mm ≥AV annulus ≥20mm
- Sino-tubular Junction ≤43mm

Age ≥80 v (21F) ≥75 y (18F)

Logistic EuroSCORE ≥20% (21F) ≥15% (18F)

Age ≥65 v

+1 or more

Primary Endpoints:

- Procedural success
- 30-Day outcomes
- Long term outcomes

- Previous cardiac surgery
- PHT (PAP>60mmHa)
- Recurrent P.E's
- **RV** failure
- **Hostile thorax (radiation, burns, etc)**
- Severe connective tissue disease
- Cachexia

Post CE Mark Registry Criteria

High risk and inoperable patients with severe AS

Anatomical Criteria

- Access Site
 - Artery diameter
 - Tortuosity
 - Lesions
 - Calcification
- Abdominal and thoracic aorta
- Native valve anatomy
 - Annulus diameter
 - Valve/Aorta angulation
 - Valve Calcifications
 - Sinus dimensions
 - Sino-tubular junction
 - Ascending aorta

Patient Selection Matrix

	Non-Ir	ıvasive	Angiography			Selection Criteria			
Anatomy	Echo	CT / MRI	LV gram	AO gram	Coronary Angiogram	AO & Runoffs	Preferred	Borderline	Not Acceptable
Atrial or Ventricular Thrombus	×						Not Present		Present
Mitral Regurgitation	×						≤ Grade 1	Grade 2	> Grade 2
LV Ejection Fraction	×		×				> 50%	30% to 50%	< 20%
LV Hypertrophy (wall thickness)	×						Normal to Mild (0.6 to 1.3 cm)	Moderate (1.4 to 1.6cm)	Severe (≥ 1.7cm)
Sub-Aortic Stenosis	×	×					Not Present		Present
Annulus (width)	×	×					20 to 23mm → 26mm device 24 to 27mm → 29mm device		< 20mm or > 27mm
Annulus-to-Aorta (angle) †		×	×	×			< 30°	30° to 45°	> 45°
AO Root (width)		×	×	×			≥ 30mm	27 to 29mm	< 27mm (if Sinus < 15mm)
Sinuses of Valsalva (height)		×	×	×	×		≥ 15mm	10 to 14mm	< 10mm
Coronary Ostia Position (take-off)					×		High	Mid-Sinus Level	Low
Coronary Disease					×		None	Mid or Distal Stenosis < 70%	Proximal Stenosis ≥ 70%
Ascend Aorta (width)		×	×	×			≤ 40mm → 26mm device ≤ 43mm → 29mm device		> 43mm
AO Arch Angulation		×		×		×	Large-Radius Turn		High Angulation or Sharp Bend
Aorta & Run-Off Vessels (Disease) ‡		×				×	None	Mild	Moderate to Severe
lliac & Femoral Vessels (diameter)		×				×	≥ 7mm	Non-Diabetic ≥ 6mm	< 6mm

[†] Within the first 7cm of the ascending aorta versus a perpendicular line across the aortic valve.

Caution: The CoreValve ReValving™ System is not available in the USA for clinical trials or commercialization.

This document is not intended to be a substitute for attending a training program for any of the products mentioned. For detailed operator training / inservice support on the CoreValve ReValving™ System, please contact your local CoreValve representative. REVALVING™ is a trademark of CoreValve, Inc. © Copyright, 2007, CoreValve, Inc. All rights reserved.

(€

Evaluate for evidence and degree of calcification, obstruction, tortuousity, and ulceration.

Correct size estimate vital

Imaging for Valvular Disease Interventions 23 mm CoreValve PAVR dimensions

Imaging for Valvular Disease Interventions Aortic root sizing - Echo

Right angled to LAX, end-diastolic, intraluminal, hinge to wall

Imaging for Valvular Disease Interventions Aortic root RAO, arch LAO, coronaries, iliofemoral – Fluoro

Imaging for Valvular Disease Interventions PAVR cath-annular position - Echo, Fluoro

Angio4 @ rao27cau10, Angio5 @ rao27cau20

Relation to Other Structures-Mitral Prosthesis

Pt 22, Male, 93 yrs

Age: 93

Diagnosis: Severe AS, mod LV, progressive dyspnoea

Comorbidities:

AF

Previously abdominal aortic aneurysm
Endoluminal repair 2005 – Talent stent graft
Occlusion of left limb of stent graft noted 2007

Logistic EUROSCORE: 30.15 %

NYHA: 2-3

Corevalve inclusion criteria: Age, Euroscore

Corevalve exclusion criteria: None

Cardiac catheter: Non obstructive RCA stenosis only

Surgical assessment: High risk, patient declined open surgery

Patient Demographics

		18F S&E 1 (N=112)	18F Registry (N=345)
Age (years)		81.7 ±6.7 [58-92]	80.8 ±7.1 [46-95]
Female Logistic EuroSCO	RE (%)	62 (55%) 23.5 ±13.9 [3-69]	172 (55%) 23.6 ±13.4 [3-83]
High Risk Co-morl	bidities		
	Hypertension	78%	57%
	Diabetes	26%	26%
	CAD	61%	57%
	Prior MI	19%	15%
	Prior PCI	33%	33%
	Prior CABG	28%	20%
	AFib	41%	31%
	Prior CVA	19%	7%
	PVD	21%	25%

Patient Demographics (continued)

Pre-procedure

AVA (cm²)

Mean Gradient (mm Hg)

Peak Gradient (mm Hg)

% in NYHA Class III/IV

LVEF

0.59 ±0.18 [0.2-1.0]

47.2 ±17.9 [15-97]

71.5 ±27.0 [24-150]

75%

51% ±15 [32-78]

0.64 ±0.20 [0.2-1.6]

50.8 ±18.2 [15-114]

79.3 ±26.9 [22-169]

84%

52% ±14 [10-80]

Procedural Results

	18 F S&E (N=112)	18F Registry (N=345)
Procedural Success	103 (92%)	337 (98%)
Mean Procedure Time	151 ±77 Min	133 ±59 Min
Discharged alive & well with CoreValve	102 (91%)	318 (92%)

Mean Gradient (mm Hg)

18F S&E

(N=112)

Pre: 47.21 ±17.98 [15-97]

Discharge: 5.07 ±6.19 [0-27]

18F Registry

(N=345)

Pre: 50.84 ±18.23 [15-114]

Discharge: 2.26 ±4.38 [0-19]

	18F S&E (N=112) es 9 (8%)		18F Registry (N=345) 8 (2%)	
Procedural Failures				
Inability to access vessel	0	(0%)	0	(0%)
Inability to navigate vasculature	0	(0%)	0	(0%)
Inability to cross native valve	0	(0%)	0	(0%)
Malplacement	6	(5%)	0	(0%)
Aortic Root Perforation	1	(1%)	1	(<1%)
Ventricular Perforation, guidewire	2	(2%)	2	(<1%)
Ventricular Perforation, pacemaker wir	e 0	(0%)	2	(<1%)
Difficulty with BAV	0	(0%)	1	(<1%)
Conversion to Surgery	4	(4%)	2	(<1%)

multiple events in same patients = data not cumulative

omplications (0–30 Days)*	18F S&E	18F Registry	
	(112)	(345)	
AMI*	1 (1%)	1 (<1%)	
Aortic dissection*	2 (2%)	1 (<1%)	
Coronary impairment	1 (1%)	0 (0%)	
Vascular complications	1 (1%)	4 (1%)	
Stroke/TIA*	8 (7%)	6 (2%)	
Pacemaker	27 (24%) **	30 (9%)	
Re-op for valve failure	0 (0%)	0 (0%)	

^{*} multiple events in same patients = data not cumulative

^{** &}gt;1/3 prophylactic

Regurgitation at Discharge

30 Day Outcomes

18F S&E 18F Registry

(N-112) (N=345)

Logistic EuroSCORE: 24% 24%

All 30-Day Mortality: 15% (17) 8% (29)

Procedure Related 10 (9%) 21 (6%) Non-Procedure/Non-valve Related 7 (6%) 8 (2%)

No valve dysfunction
No valve migration

Quality of Life at Follow-up 21F + 18F Safety Studies Pooled – N=175

Mean Gradient (mm Hg)

Last Follow-up

Ejection Fraction (%)

Last Follow-up NYHA 42% 43% 14% 1% IV

Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

Alec Vahanian; Ottavio Alfieri; Nawwar Al-Attar; Manuel Antunes; Jeroen Bax; Bertrand Cormier; Alain Cribier; Peter De Jaegere; Gerard Fournial; Arie Pieter Kappetein; Jan Kovac; Susanne Ludgate; Francesco Maisano; Neil Moat; Friedrich Mohr; Patrick Nataf; Luc Pierard; Jose Luis Pomar; Joachim Schofer; Pilar Tornos; Murat Tuzcu; Ben van Hout; Ludwig K. Von Segesser; Thomas Walther

European Heart Journal 2008; doi: 10.1093/eurheartj/ehn183

Leicester Experience

- 42 TAVI cases
 - 30th January 2007 8th June 2008
- Logistic Euroscore 19.9 ± 11.4
- Periprocedural mortality 1/42 tamponade/?transient aortic tear
- Additional 30 day mortality 2/41- traumatic subdural (day 19)
- Subsequent mortality 4/39
 - 1 aggressive metastatic sarcoma (day 90)
 - 1 multiple pulmonary emboli (day 94)
 - 1 renal failure/progression of leukaemia (day 94)
 - 1 mesenteric ischaemia (AF) (day 269)

Conclusions

Percutaneous Aortic Valve Replacement with the CoreValve System

- Has been shown to be a safe and effective procedure in high risk aortic stenosis patients.
- > Has evolved towards a pure percutaneous procedure.
- As with novel technologies PAVR has a definite learning curve which requires an in-depth understanding of patient selection and various anatomical criteria.
- Long term efficacy and durability of PAVR in patients with aortic stenosis will be determined by future randomized trials.